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Abstract

We present an optimal control approach for the solidification process of a melt in a container. The process is described
by a two phase Stefan problem with the free boundary (interface between the two phases) modelled as a graph. We control
the evolution of the free boundary using the temperature on the container wall. The control goal consists in tracking a
prescribed evolution of the free boundary. We achieve this goal by minimizing a appropriate cost functional. The resulting
minimization problem is solved numerically by a steepest descent method with step size control, where the gradient of the
cost functional is expressed in terms of the adjoint variables. Several numerical examples are presented which illustrate the
performance of the method.

The novelty of the approach presented consists in using a sharp interface model for the control of the free boundary.
This guarantees direct access to the free boundary as optimization variable in terms of its parametrization as a graph.
Moreover at any stage of the optimization process the physical laws constituted by the mathematical model are conserved,
and the heat flux into the free boundary is variable and thus does not need to be specified a priori in the optimization pro-
cess. This guarantees more flexibility than in the optimization approaches to two phase Stefan problems taken so far.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Solidification processes play an important role in many areas of metallurgy. For example, in many crystal
growth processes the evolution and the form of the interface between the solid and liquid phase strongly influ-
ences the quality of the crystal. It is known from engineering experience, that certain forms of interfaces (flat,
concave, convex) exclude dislocations, say and thus enhance material properties.
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In the present work we develop an optimization strategy for the free boundary in a two phase Stefan prob-
lem. As mathematical model we use heat conduction in the two phases, where the coupling of the phases is
established through the Stefan condition at the free boundary. We use a sharp interface model and assume
that the free boundary can be described by a graph. Our goal is to control the evolution of the free boundary
using the temperature on the container boundary as control function. Control through boundary temperature
is a macroscopic control mechanism. Considering this, we neglect effects on the meso- and microscale, such as
dendritic growth and the evolution of point defects, in our mathematical model. To achieve the control goal
we track a prescribed evolution of the interface which from the optimization point of view serves as desired
state. For this purpose we define a cost functional in which the error between the graphs of the free boundary
and a desired free boundary is to be minimized. The modeling of the interface as a graph is motivated by the
ability to access directly the free boundary in terms of an optimization variable. To anticipate discussions we
note that the incorporation of meso- and microscopic effects would necessitate a different modelling of the
interface.

Altogether we end up with an optimization problem for the temperature on the container wall, which is
coupled to the temperature in the solid and liquid phases and to the desired free boundary by an highly non-
linear system of pde’s.

To the best of our knowledge this is the first attempt to control the evolution of the free boundary directly
using a sharp interface model. With the approach presented we advance simulation and optimization capabil-
ities in solidification processes in the following respects; the interface serves as an optimization variable itself
and thus can be controlled directly. This is different for control of the free boundary in phase field and level set
models where the free boundary is diffuse or represented as a zero level set, respectively, so that it only admits
indirect control. Furthermore at any stage of the optimization process the physical laws constituted by our
mathematical model are conserved. This among other things guarantees that every solution to our optimiza-
tion problem consisting of the interface and the states in the solid and liquid phases, is physical in the sense
that it obeys the physics constituted by the mathematical model.

Let us first comment on closely related literature in this research field. Zabaras et al. in [18,20,7,19,16,17]
consider an approach where the free boundary is assumed to be known a-priori. In [18] a one-dimensional
problem is considered. The heat flow into the free boundary and the position of the free boundary is given
and the heat flow into the fixed boundary is to be determined. In particular, in both phases an inverse heat
conduction equation is solved using a integral method such that the melting temperature condition # = #m

is satisfied at the free boundary, where # is the temperature and #m is the melting temperature.
In [7,19] the inverse problem is replaced by a minimization problem. Its goal consists in minimizing the tem-

perature difference at the free boundary, i.e. 1
2
k#m � #ðx; tÞk2

L2ðC�½0;T �Þ ¼ minq0
, where q0 is the heat flow into the

solid phase at the fixed boundary. This means that the free boundary is set to the desired boundary without
ensuring that the melting temperature condition # = #m is satisfied at the free boundary. A-priori fixing of the
free boundary also implies, that the Stefan condition is applied at a wrong position (namely not at the real free
boundary) and that the wrong physical constants for the heat equation in the area between the real free
boundary and the desired free boundary are used. The heat flow at the fixed boundary into the liquid phase
is set to 0 (this means, that the container is isolated). This allows to separate the problems for each phase. In
particular, the heat flow into the free boundary can be computed using the Stefan condition, and by solving a
direct (forward) heat conduction problem [7], or a direct (forward) heat conduction problem including con-
vection [19]. The optimization goal consists in determining the heat flux at the fixed boundary of the solid
phase and is solved by a conjugated gradient algorithm, where the sensitives are determined using the adjoint
approach.

Yang in [16] extends the approach of [19] to the case where the temperature at the fixed boundary in the
liquid phase is also variable. To separate the problems for each phase the heat flux into the free boundary
is assumed to be given. The minimization problem in the liquid phase consists in determining the temperature
at the fixed boundary considering heat conduction, convection and the Stefan condition, such that the error of
the temperature at the free boundary k#m � #ðx; tÞk2

L2ðC�½0;T �Þ is minimized, with the position of the free bound-
ary and heat flux into the free boundary given. The minimization problem for the solid phase then reads as in
[7,19]: Given the position and the heat flux of the free boundary, find the heat flux on the fixed boundary such
that the error of the temperature at the free boundary is minimized.
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Let us comment more detailed on the differences of our approach compared to those presented by Kang
and Zabaras in [7], Zabaras and Nguyen in [19], and Yang in [16]. In these approaches the heat flux into
the free boundary needs to be specified a-priori in the optimization problem. This is unusual since in an opti-
mization approach to a Stefan problem the heat flux into the free boundary should be variable and not be
specified a-priori. Zabaras et al. resolve this problem by fixing the heat flux into the liquid phase (see above).
As a consequence only the heat flux into the solid phase may serve as control variable in his approach. This is
different in the approach presented here, where the heat fluxes into both, the liquid and the solid phase are
variable and therefore may serve as control variables. This in turn gives further flexibility in the optimization
process. Yang fixes the heat flux into the free boundary a-priori, which is usually unknown in practice. As
already mentioned above, both, the approach of Zabaras et al. and Yang have in common that the free bound-
ary is a-priori fixed so that the Stefan condition probably is applied at a wrong position and the underlying
physics is not longer represented by the mathematical model. Speaking in mathematical terms their approach
only guarantees a physical solution # if k#m � #ðx; tÞk2

L2ðC�½0;T �Þ ¼ 0 is satisfied which for a-priori fixed free
boundaries certainly only happens by chance. We recall that in the approach presented here every solution
is guaranteed to satisfy the mathematical system which certainly forms an advantage compared to the
approaches sketched above.

Let us also briefly comment on further literature related to our research. In [3] the free boundary is con-
trolled by thermostats acting on the boundary. Instead of optimal control a feedback control based on real
temperature measurements is applied. As mathematical model a hyperbolic Stefan problem based on the lin-
earized Gurtin–Pipkin heat conduction law is used. In [6] a one-dimensional two-phase Stefan problem with
‘‘on–off’’ control is analyzed.

In [5,4] free boundary control is performed by inversion of the one-dimensional Stefan problem with a qua-
dratic nonlinear reaction term. Kearsley in [8] controls the amount of melted material for a Stefan problem
using a sequential quadratic programming algorithm.

Pawlow in [10,11] presents an approach, where the error between a desired temperature #d and the temper-
ature of the substance is to be minimized over the whole space–time domain using boundary control. She con-
siders a two-phase Stefan problem which is transformed into a variational inequality, and also develops an
efficient gradient type algorithm based on the adjoint system approach.

The present paper is organized as follows. Section 2 contains the problem specification including the phys-
ical model and the optimization problem. Further an expression for the gradient of the cost functional is pre-
sented which uses adjoint information. Section 3 contains the description of the numerical approach taken in
the present work, including a detailed discussion of the optimization algorithm. Section 4 presents numerical
results for the solidification of a silicon melt, and the Appendix contains a detailed derivation of the adjoint
system and of the compatibility conditions of the boundary temperature at the intersection of the container
wall and the free boundary.

2. Problem definition

2.1. Physical model

Let X � Rnþ1 be a bounded domain containing the substance. For t 2 [0, T] let Xs(t),Xl(t) � X denote the

parts containing the solid and the liquid phase, where Xs(t) \ Xl(t) = ; and X ¼ XsðtÞ [ XlðtÞ. The free bound-
ary is n-dimensional and defined by CðtÞ ¼ XsðtÞ \ XlðtÞ, see Fig. 1 for n = 1.

In each phase the heat equation for the absolute temperature holds;
ot# ¼
ks

csqs

D# in Xs; ot# ¼
kl

clql

D# in Xl: ð1Þ
Here ks, kl are the heat conductivities in the solid and liquid phase, respectively, cs, cl denote the specific heat
capacities, and qs, ql the corresponding densities.

The Stefan condition is a conservation law on the free boundary which balances the heat transported into
the free boundary and the melting heat generated through solidification. In mathematical terms it reads
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Fig. 1. Solid phase Xs, liquid phase Xl and free boundary C in a container with boundary oX.

660 M. Hinze, S. Ziegenbalg / Journal of Computational Physics 223 (2007) 657–684
V CðLl � LsÞ ¼
ks

qs

ol#

����
Xs

� kl

ql

ol#

����
Xl

¼: � ks=l

qs=l

ol#

" #
C

on C: ð2Þ
Here l denotes the unit normal vector of the free boundary, directed from the solid into the liquid phase. VC is
the velocity in direction of l and L is the latent heat per unit volume in each of the phases. The right hand side
of (2) describes the heat transported into the boundary and the left hand side describes the (melting) heat
which is generated by the solidification, see [9,15,8] for a description of this model.

At the free boundary C the temperature satisfies
# ¼ #M; ð3Þ
where #M denotes the melting temperature.
The temperature #b of the container is coupled to the temperature at the phase boundaries through the heat

transfer equation
q ¼ as=lð#b � #Þ on oXs=l;
where the heat flow density q is given by q = ks/lom#. (a = 0 would refer to the case that the container is iso-
lated.) This leads to a third-order boundary condition of the form
#þ ks=l

as=l

om# ¼ #b on oX; ð4Þ
where m is the outer normal vector of the boundary oX, i.e. l ¼ mjoXs
¼ �mjoXl

on C.
To avoid problems with mass conservation we assume ql = qs = q, which forms no real restriction since in

most practical applications the density in solid and liquid phase is approximately equal. We set u :¼ #�#M

qðLl�LsÞ and
Ds=l :¼ ks=l

cs=lq
so that Eqs. (1)–(4) transform into
otu ¼ Ds=lDu in Xs=l;

V C ¼ �½ks=lolu�C on C;

u ¼ 0 on C;

ub ¼ uþ ks=l

as=l

omu on oX:
As initial value conditions we now have
uð0; xÞ ¼ u0ðxÞ in X and

Cð0Þ ¼ C0:
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2.2. Optimization problem

Our goal is to control the free boundary using the boundary temperature ub(t,x) on the container walls. As
control horizon we take t 2 (0, T] for some T > 0. We split ub into two parts:
ub ¼ ub0 þ bubc;
with a fixed part ub0 (e.g. a temperature known from experience), and a control temperature part bubc, where b
is a weight function which allows to tailor the control part of the boundary condition.

The domain is assumed a-priori known to be a container of the form X = (0,X1) · (0, X2) · � � � · (0,Xn+1).
The free boundary is described as a graph
CðtÞ ¼
y

f ðt; yÞ

� �
: y 2 ½0;X 1� � � � � � ½0;X n�

� �
;

with f : [0,T] · [0,X1] · � � � · [0,Xn]! [0,Xn+1]. For the ease of notation we define S :¼ [0,X1] · � � � · [0,Xn].
We model the desired evolution C also as a graph by �f : ½0; T � � S ! ½0;X nþ1�, and then are in the position

to formulate the objective functional of our minimization problem;
Jðf ; ubcÞ :¼ 1

2

Z T

0

Z
S
ðf ðt; yÞ � �f ðt; yÞÞ2dy dt þ k2

2

Z
S
ðf ðT ; yÞ � �f ðT ; yÞÞ2dy

þ k1

2

Z T

0

Z
oX

bðt; xÞ2ubcðt; xÞ2dxdt

¼ min !ubc
: ð5Þ
The first two terms in this expression model the objective in our minimization problem with k2 weighing the
deviation of the free boundary from the desired free boundary at time t = T. The third term weighs the control
cost with k1 and may serve as regularization.

2.3. The two dimensional case

Next we develop equations for the velocity of a graph in the two-dimensional case (n = 1). The tangential
vector of the graph
CðtÞ ¼
y

f ðt; yÞ

� �
: y 2 ½0;X 1�

� �
;

at the point y is given by ð 1 fyðt; yÞ ÞT, and the normal l can be expressed as
lðt; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fyðt; yÞ2

q �fyðt; yÞ
1

� �
:

For the velocity of the graph in normal direction we obtain
V Cðt; yÞ :¼ o

ot

y

f ðt; yÞ

� �T

lðt; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fyðt; yÞ2

q 0

ftðt; yÞ

� �T �fyðt; yÞ
1

� �
¼ ftðt; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fyðt; yÞ2
q : ð6Þ
Next we specify the initial and boundary conditions for f. For this purpose we recall that �f denotes the desired
evolution of the free boundary. As initial condition we set f ð0; yÞ ¼ �f ð0; yÞ and define f0ðyÞ :¼ �f ð0; yÞ. More-
over we introduce the following boundary condition for f:
f ðt; 0Þ ¼ �f ðt; 0Þ; f ðt;X 1Þ ¼ �f ðt;X 1Þ: ð7Þ

Besides the fact that we intend to incorporate as much a-priori information as possible into our mathematical
model, this choice simplifies our moving grid implementation. Especially it avoids the need of an additional
boundary grid for the boundary temperature, and this avoids the interpolation of its values between the
two grids. Further details are given in Section 3.5.
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To ensure continuity at the intersection of the container wall and the free boundary the introduction of (7)
requires the following compatibility conditions for ub, whose detailed derivation is presented in Appendix B;
�f tfy

1þ f 2
y

¼ ðas � alÞub on ð0; T � � fð0; �f ðt; 0ÞÞg; ð8Þ

�f tfy

1þ f 2
y

¼ �ðas � alÞub on ð0; T � � fðX 1; �f ðt;X 1ÞÞg: ð9Þ
Since fy is unknown we also specify fy with the help of �f as follows:
fyðt; 0Þ ¼ �f yðt; 0Þ; f yðt;X 1Þ ¼ �f yðt;X 1Þ: ð10Þ
The continuity of our system finally leads to
oe2
ubjXs=l

¼
�f t

1þ �f 2
y

1

as � al

as=l

ks=l

þ 2
�f yfyy

ð1þ �f 2
yÞ

2

 !
� ub

Ds=l

 !
�

�f yt

ðas � alÞð1þ �f 2
yÞ

2
ð11Þ
on (0, T] · {(0, f(t, 0))}, and
oe2
ubjXs=l

¼
�f t

1þ �f 2
y

1

as � al

as=l

ks=l

� 2
�f yfyy

ð1þ �f 2
yÞ

2

 !
� ub

Ds=l

 !
þ

�f yt

ðas � alÞð1þ �f 2
yÞ

2
ð12Þ
on (0, T] · {(X1, f(t,X1))}. Since fyy is unknown in these equations we further set
fyyðt; 0Þ ¼ �f yyðt; 0Þ; f yyðt;X 1Þ ¼ �f yyðt;X 1Þ: ð13Þ
Appendix B contains a detailed derivation of these compatibility conditions. To anticipate the discussion of
Section 3.5 we note, that these boundary conditions are motivated mathematically. In particular they simplify
the numerical implementation.

Further we need to ensure that the boundary condition is satisfied for t = 0, i.e. we need to set
ubð0; xÞ ¼ u0ðxÞ þ
ks=l

as=l

omu0ðxÞ: ð14Þ
We recall that the temperature ub on the container wall is split into two parts, i.e. ub = ub0 + bubc. Now we
require that ub0 satisfies the compatibility conditions (8), (9), (11), (12) and (14) and assume
bðt; xÞ ¼ oe2
bðt; xÞ ¼ 0 for x 2 C \ oX and t 2 ð0; T �;

bð0; xÞ ¼ 0 for x 2 oX:
ð15Þ
These conditions ensure that ub for every choice ubc satisfies (8), (9), (11), (12) and (14), so that ubc may
serve as the control variable in our optimization problem specified below. Particular choices for b are pre-
sented in Section 4.1.

Our optimization problem now reads
Jðf ; ubcÞ :¼ 1

2

Z T

0

Z X 1

0

ðf ðt; yÞ � �f ðt; yÞÞ2dy dt þ k1

2

Z T

0

Z
oX

bðt; xÞ2ubcðt; xÞ2dxdt

þ k2

2

Z X 1

0

ðf ðT ; yÞ � �f ðT ; yÞÞ2dy

¼ min !u;f ;ubc
; ð16Þ
subject to the conditions
otuðt; xÞ � Ds=lDuðt; xÞ ¼ 0 for t 2 ð0; T � and x 2 Xs=lðtÞ; ð17Þ

ftðt; yÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fyðt; xÞ

q
½ks=lolu� t;

y

f ðt; yÞ

� �� �
¼ 0 for t 2 ð0; T � and y 2 ð0;X 1Þ; ð18Þ

uðt; xÞ ¼ 0 for x ¼
y

f ðt; yÞ

� �
; t 2 ð0; T � and y 2 ð0;X 1Þ; ð19Þ
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ks=l

as=l

omuðt; xÞ þ uðt; xÞ � ub0ðt; xÞ � bðt; xÞubcðt; xÞ ¼ 0 for t 2 ð0; T Þ and x 2 oXs=lðtÞ n CðtÞ; ð20Þ

uð0; xÞ ¼ u0ðxÞ for x 2 X; ð21Þ
f ð0; yÞ ¼ �f ð0; yÞ for y 2 ½0;X 1�; and ð22Þ
f ðt; 0Þ ¼ �f ðt; 0Þ f ðt;X 1Þ ¼ �f ðt;X 1Þ;
fyðt; 0Þ ¼ �f yðt; 0Þ fyðt;X 1Þ ¼ �f yðt;X 1Þ;
fyyðt; 0Þ ¼ �f yyðt; 0Þ fyyðt;X 1Þ ¼ �f yyðt;X 1Þ

9>=>; for t 2 ð0; T �: ð23Þ
The functions ub0, b, �f and u0 are given and the functions u, f, ubc are sought. Eqs. (17)–(20) represent the heat
equation, the Stefan condition, the condition for the melting temperature and the heat transfer condition at
the boundary oX. Eqs. (21)–(23) represent the initial and the boundary conditions for u and f. From here on-
wards we assume that the optimization problem admits a solution ðu�; f �; u�bcÞ.

2.4. Sensitives via the adjoint equation approach

We now formally derive the first-order necessary optimality condition for the minimization problem (16)–
(23) using the Lagrange approach. The Lagrange functional associated to the minimization problem (16)–(20)
is given by
Lðf ; u; ubc; ps; pl; pbs; pbl; pC;1; pC;2Þ

:¼ Jðf ; ubcÞ þ
Z T

0

Z
Xs

ðotu� DsDuÞps þ
Z T

0

Z
Xl

ðotu� DlDuÞpl

þ
Z T

0

Z X 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q
½ks=lolu� � Uþ ft

� 	
pC;1 þ

Z T

0

Z X 1

0

ðu � UÞpC;2

þ
Z T

0

Z
oXsðtÞnCðtÞ

ks

as

omuþ u� ub0 � bubc

� �
pbs þ

Z T

0

Z
oXlðtÞnCðtÞ

kl

al

omuþ u� ub0 � bubc

� �
pbl;
where u and f are required to satisfy (21)–(23), and with
Uðt; yÞ :¼ t;
y

f ðt; yÞ

� �� �
:

The functions ps, pl, pbs, pbl, pC,1 and pC,2 denote the Lagrange multipliers associated to (17)–(20). The first-
order necessary optimality condition for our optimization problem now is given by
rL ¼ 0; ð24Þ

and the adjoint equation system for our problem is defined through
Lu~u ¼ 0 and Lf
~f ¼ 0
for all feasible directions ~u and ~f . (Lu and Lf here denote the directional derivatives of L with respect to u and
f, respectively.) Using the normalizations
ps ¼
ks

Ds

qs on Xs; pl ¼
kl

Dl

ql on Xl; qC ¼ �pC;1; ð25Þ
these conditions lead to the following adjoint equation system:
otqsðt; xÞ þ DsDqsðt; xÞ ¼ 0

otqlðt; xÞ þ DlDqlðt; xÞ ¼ 0
for

x 2 XsðtÞ
x 2 XlðtÞ

and t 2 ð0; T Þ; ð26Þ

qsðt; xÞ ¼ � ks

as
omqsðt; xÞ

qlðt; xÞ ¼ � kl

al
omqlðt; xÞ

for
x 2 oXsðtÞ n CðtÞ
x 2 oXlðtÞ n CðtÞ

and t 2 ð0; T Þ; ð27Þ
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pbsðt; xÞ ¼ asqsðt; xÞ
pblðt; xÞ ¼ alqlðt; xÞ

for
x 2 oXsðtÞ n CðtÞ
x 2 oXlðtÞ n CðtÞ

and t 2 ð0; T Þ; ð28Þ

qsðT Þ ¼ 0

qlðT Þ ¼ 0
for

x 2 XsðtÞ;
x 2 XlðtÞ;

ð29Þ

qsðt; xÞ ¼ qCðt; yÞ for t 2 ð0; tÞ; y 2 ð0;X 1Þ and x ¼
y

f ðt; yÞ

� �
; ð30Þ

qlðt; xÞ ¼ qCðt; yÞ for t 2 ð0; tÞ; y 2 ð0;X 1Þ and x ¼
y

f ðt; yÞ

� �
; ð31Þ

� otqCðt; yÞ ¼ f ðt; yÞ � �f ðt; yÞ for t 2 ð0; tÞ; y 2 ð0;X 1Þ and x ¼
y

f ðt; yÞ

� �
; ð32Þ

qCðT ; yÞ ¼ k2ðf ðT ; yÞ � �f ðT ; yÞÞ for y 2 ½0;X 1Þ and ð33Þ
qCðt; 0Þ ¼ qCðt;X 1Þ ¼ 0 for t 2 ½0; t�: ð34Þ
Eqs. (26)–(31) are deduced from Lu~u ¼ 0. They describe a ‘‘backward heat equation’’ in each phase with
homogeneous third-order boundary conditions on the container boundary and Dirichlet boundary conditions
on the free boundary. The functions ps, pl are the adjoint temperatures in the phases, and pbs and pbl are the
adjoint temperatures on the container boundary. The function pC is the adjoint graph function and is deter-
mined by Lu~u ¼ 0 ^ Lf

~f ¼ 0, which leads to (32)–(34). This equations can be equivalently written as
qCðt; yÞ ¼ k2ðf ðT ; yÞ � �f ðT ; yÞÞ þ
Z t

T
f ðs; yÞ � �f ðs; yÞds:
Appendix A contains a detailed derivation of the adjoint equation system.
Now we assume that the Stefan problem for every ubc admits a unique solution. In particular we consider f

as a function of ubc, f = f(ubc). With these assumptions it is meaningful to define the reduced cost functional
KðubcÞ :¼ Jðf ðubcÞ; ubcÞ;

and it is well known, that
K 0ðubcÞ ¼ Lubc
ðf ; u; ubc; ps; pl; pbs; pbl; pC;1; pC;2Þ
holds. Since here
Lubc
ðf ; u; ubc; ps; pl; pbs; pbl; pC;1; pC;2Þðt; xÞ ¼ k1bðt; xÞ2ubcðt; xÞ �

bpbsðt; xÞ : for x 2 oX n oXl;

0 : for x 2 oX \ C;

bpblðt; xÞ : for x 2 oX n oXs;

8><>:

and all t 2 (0,T], there holds
K 0ðubcÞðt; xÞ ¼ k1bðt; xÞ2ubcðt; xÞ �
basqsðt; xÞ : for x 2 oX n oXl;

0 : for x 2 oX \ C;

balqlðt; xÞ : for x 2 oX n oXs;

8><>: ð35Þ
where we have used (28). As a consequence the gradient K 0(ubc) for given ubc can be computed by first solving
(17)–(23) for u, f, and then by solving (26)–(34) for the adjoint variables.

In our case the optimally condition (24) is equivalent to
K 0ðubcÞ ¼ 0: ð36Þ

In Section 3 we introduce a gradient method with line search to solve this equation numerically.

Remark 2.1. In practical applications pointwise bounds apply to boundary controls, i.e. a 6 ubc 6 b has to
hold with some functions a and b satisfying a < b. In this case the first-order necessary optimally condition
reads



e

Fig. 2.
For d
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Z T

0

Z
oX

K 0ðubcÞðt; xÞðvðt; xÞ � ubcðt; xÞÞdxdt P 0 ð37Þ
for all boundary functions v satisfying a 6 v 6 b.
3. The numerical approach

The algorithmical approach we take is an explicit finite difference approach on a moving grid on
X = (0, X1) · (0,X2). To be more precise we define the grid G at the time instance t by
GðtÞ :¼ fxijðtÞ : 0 6 i 6 N 1;�N 2 6 j 6 N 2g with xi;jðtÞ ¼ ðxij;1ðtÞ; xij;2ðtÞÞ

and fix the discretization in the first spatial direction (e1-direction) by
xij;1ðtÞ ¼ yiðtÞ ¼

X 1

2
1� 1� 2i

N1

� 	d
� �

: i
N1
< 1

2
;

X 1

2
1þ 2i

N1
� 1

� 	d
� �

: i
N1

P 1
2
;

8>>><>>>: ð38Þ
where the parameter d is used to adjust the grid width at the boundary, see Fig. 2. Practical values are
0.3 < d 6 1. The discretization of the second direction (e2-direction) at t = 0 is defined by
xij;2ð0Þ ¼
f0ðyiÞ 1þ j

N2

� 	
: j < 0;

f0ðyiÞ 1� j
N2

� 	
þ X 2

j
N2

: j P 0:

8><>: ð39Þ
The polygon defined by the points {xi0(0)} is the discretized free boundary C0.
For the time discretization we use the equidistant grid
s :¼ T
Nt
; tl ¼ ls; l ¼ 0; . . . ;N t:
With ûijðtlÞ and f̂ iðtlÞ the discrete temperature ûijðtlÞ 	 uðtl; xijðtlÞÞ and the discrete free boundary
f̂ iðtlÞ 	 f ðtl; yiÞ are described. The discrete versions of the other variables are also supplemented with a hat.

For the numerical solution of the equation
K 0ðubcÞ ¼ 0;
we use the following gradient algorithm.
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Two grids with different parameters d. Between the free boundary and the cylinder boundary the grid is equidistant in e2-direction.
= 1 it is also equidistant in e1-direction.



C0: Initialization of ûð0Þbc :

ûð0Þbc;ij ¼ 0 for i ¼ 1;N 1 and j ¼ N 2 þ 1; . . . ;N 2 � 1;

ûð0Þbc;ij ¼ 0 for jjj ¼ N 2 and i ¼ 1; . . . ;N 1 � 1:

FWD: Forward step 0: computation of ûð0Þ, f̂ ð0Þ using ûð0Þbc ¼ 0
S1: For all 1 6 k 6 kmax

BWD: Solving of the adjoint equation system

GRD: Computation of the gradient bK 0ðûðk�1Þ
bc Þ ¼: v̂ðkÞ

LM: Line minimization: bK ðûðk�1Þ
bc þ sðkÞv̂ðkÞÞ ¼ min !sðkÞ

FWD: Forward step k: computation of ûðkÞ, f̂ ðkÞ using

ûðkÞbc ¼ ûðk�1Þ
bc þ sðkÞv̂ðkÞ:
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The particular steps are described in detail in the following subsections. Suitable stopping criterions are
FW
FW
kmax :¼ min k :
bJ ðk�1Þ � bJ ðkÞbJ ð0Þ 6 eJ

( )
ð40Þ
and/or
kmax :¼ min k :
ksðkÞv̂ðkÞk
kub0k2

6 ev

� �
: ð41Þ
3.1. FWD: Forward step k
D.0: Initialization of the temperature ûðkÞij ð0Þ ¼ u0ðxðkÞij ð0ÞÞ and of the grid, see (38) and (39)
D.1: For all l = 1, . . . ,Nt

FWD.1.1 Computation of the motion of the free boundary using the Stefan condition:

Df̂ ðkÞi ðtlÞ ¼ ðksô
�
e2

uðkÞi0 ðtl�1Þ � klô
þ
e2

uðkÞi0 ðtl�1ÞÞð1þ ôy f̂
ðkÞ
i ðtl�1Þ2Þs

for all i = 1, . . . ,N1 � 1, where ô
e2
ûðkÞi0 ðtl�1Þ denotes the finite backward/forward differences of

oe2
uðtl�1; x

ðkÞ
i0 ðtl�1ÞÞjXs=l

. The discrete free boundary is equal to f̂ ðkÞi ðtl�1Þ ¼ x̂ðkÞi0;2ðtl�1Þ, and

ôy f̂ ðkÞi ðtl�1Þ denotes the finite difference corresponding to oyf(tl�1,yi).Setting of the boundary
values:

Df̂ ðkÞ0 ðtlÞ :¼ fb1ðtlÞ � fb1ðtl�1Þ Df̂ ðkÞN1
ðtlÞ :¼ fb2ðtlÞ � fb2ðtl�1Þ:

FWD.1.2 Computation of the new grid:

xðkÞij;2ðtlÞ ¼ xðkÞij;2ðtl�1Þ þ Df̂ ðkÞi ðtlÞ 1� jjj
N 2

� �
for all i = 0, . . . ,N1 and j = �N2 + 1, . . . ,N2 � 1.

FWD.1.3 Computation of the temperature at the new grid G(tl):



ûðkÞij ðtlÞ ¼ ûðkÞij ðtl�1Þ þ Ds=l
bDûðkÞij ðtl�1Þsþ ôe2

ûðkÞij ðtl�1ÞðxðkÞij;2ðtlÞ � xðkÞij;2ðtl�1ÞÞ

for i = 1, . . . ,N1 � 1 and jjj = 1, . . . ,N2 � 1. The terms bDuðkÞij ðtl�1Þ and ôe2
uðkÞij ðtl�1Þ denote the finite

difference approximation of Du and oe2
u at ðtl�1; x

ðkÞ
ij ðtl�1ÞÞ.

FWD.1.4 Setting of the boundary values:

ûðkÞij ðtlÞ ¼ ubðtl; x
ðkÞ
ij ðtlÞÞ þ bðkÞl;ijû

ðkÞ
bc;ijðtlÞ 


ks=l

as=l

ôe1
uðkÞij ðtlÞ

for i ¼ 0;N 1 and j ¼ �N 2 þ 1; . . . ;N 2 � 1;

ûðkÞij ðtlÞ ¼ ubðtl; x
ðkÞ
ij ðtlÞÞ þ bðkÞl;ijû

ðkÞ
bc;ijðtlÞ �

ks=l

as=l

ôe2
uðkÞij ðtlÞ

for j ¼ �N 2 and i ¼ 1; . . . ;N 1 � 1;

where bðkÞl;ij ¼ bðxðkÞij ðtlÞÞ.
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The first equation in step FWD.1.1 is the discrete version of the Stefan condition (18) together with
olu ¼ oe2

u
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ fy

p
. For the computation of the finite differences of the u-derivatives in step FWD.1.3 it has

to be considered, that the grid in general is not orthogonal. The grid line fx̂ðkÞi0 ðtlÞg defines the discrete free
boundary: x̂ðkÞi0;2ðtlÞ ¼ f̂ ðkÞi ðtlÞ. Both, in the solid phase (between 0 and f̂ ðkÞi ðtlÞ) and in the liquid phase (between
f̂ ðkÞi ðtlÞ and X2) the grid points are distributed equidistantly in e2 direction, see Fig. 2.

3.2. BWD: Backward step k

For the backward problem the same grid fxðk�1Þ
ij ðtlÞg as for the (previous) forward problem is used.
BWD.0: Initialization of the adjoint temperatures:

q̂ðkÞs;ijðT Þ ¼ 0 for i ¼ 0; . . . ;N 1; j ¼ �N 2; . . . ;�1;

q̂ðkÞl;ijðT Þ ¼ 0 for i ¼ 0; . . . ;N 1; j ¼ 1; . . . ;N 2;

q̂ðkÞC;iðT Þ ¼ k2ð�f ðT ; yiÞ � f̂ ðk�1Þ
i ðT ÞÞ for i ¼ 0; . . . ;N 1:

BWD.1: For all l = Nt � 1, . . . , 0

BWD.1.1 Setting of the adjoint temperatures q̂ðkÞs and q̂ðkÞl at the free boundary:

q̂ðkÞs;i0ðtlþ1Þ ¼ q̂C;iðtlþ1Þ;
q̂ðkÞl;i0ðtlþ1Þ ¼ q̂C;iðtlþ1Þ:

ô�e2
ûðkÞi0 ðtl�1Þ denote the finite forward/backward differences, as described above.

BWD.1.2 Computation of the adjoint temperature within the phases:

q̂ðkÞs;ijðtlÞ ¼ q̂ðkÞs;ijðtlþ1Þ þ Ds
bDq̂ðkÞs;ijðtlþ1Þs

þ ôe2
q̂ðkÞs;ijðtlþ1Þ xðk�1Þ

ij;2 ðtlÞ � xðk�1Þ
ij;2 ðtlþ1Þ

� 	
;

q̂ðkÞl;ijðtlÞ ¼ q̂ðkÞl;ijðtlþ1Þ þ Ds
bDq̂ðkÞl;ijðtlþ1Þs

þ ôe2
q̂ðkÞl;ijðtlþ1Þ xðk�1Þ

ij;2 ðtlÞ � xðk�1Þ
ij;2 ðtlþ1Þ

� 	
;



As in the forward algorithm, bDq̂ denotes the finite difference approximation of Dq.
BWD.1.3 Setting of the boundary values:

q̂ðkÞs;ijðtlÞ ¼ 

ks

as

ôe1
qðkÞs;ijðtlÞ for i ¼ 0;N 1 and j ¼ 1; . . . ;N 2 � 1;

q̂ðkÞs;ijðtlÞ ¼
ks

as

ôe2
qðkÞs;ijðtlÞ for j ¼ �N 2 and i ¼ 1; . . . ;N 1 � 1;

q̂ðkÞl;ijðtlÞ ¼ 

kl

al

ôe1
qðkÞl;ijðtlÞ for i ¼ 0;N 1 and j ¼ �N 2 þ 1; . . . ;�1;

q̂ðkÞl;ijðtlÞ ¼ �
kl

al

ôe2
qðkÞl;ijðtlÞ for j ¼ N 2 and i ¼ 1; . . . ;N 1 � 1:

BWD.1.4 Computation of the adjoint temperature qC:

q̂ðkÞC;iðtlÞ ¼ q̂ðkÞC;iðtlþ1Þ þ s f̂ ðk�1Þ
i ðtlÞ � �f ðtl; yiÞ

� 	
for i = 1, . . . ,N1 � 1. Setting of the boundary values

q̂ðkÞC;0ðtlÞ ¼ q̂ðkÞC;N1
ðtlÞ ¼ 0:
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3.3. GRD: computation of the gradient

The numerical approximation of the gradient is computed according to (35);
GRD: Computation of the gradient:

v̂ðkÞij ðtlÞ ¼ k1b
ðkÞ2
l;ij uðk�1Þ

bc;ij ðtlÞ

�

asb
ðkÞ
l;ijq

ðkÞ
s;ijðtlÞ for i ¼ 0;N 1 and j ¼ 1; . . . ;N 2;

asb
ðkÞ
l;ijq

ðkÞ
s;ijðtlÞ for j ¼ �N 2 and i ¼ 0; . . . ;N 1;

0 for j ¼ 0 and i ¼ 0;N 1;

alb
ðkÞ
l;ijq

ðkÞ
l;ijðtlÞ for i ¼ 0;N 1 and j ¼ �N 2; . . . ;�1;

alb
ðkÞ
l;ijq

ðkÞ
l;ijðtlÞ for j ¼ N 2 and i ¼ 0; . . . ;N 1

8>>>>>>><>>>>>>>:
and for l = 1, . . . ,Nt.
3.4. LM: line minimization

We use a quadratic approximation approach for line minimization of
sðkÞ ¼ argminKðsÞ where KðsÞ :¼ K ûðk�1Þ
bc þ sv̂ðkÞ

� 	
:

If we would evaluate K on the same grid as the one used for the forward and backward step, the line mini-
mization would require the main part of the computation time. Numerical experience shows that high accu-
racy of s(k) is not required. Therefore in line minimization we evaluate K on a grid which is twice as coarse as
the grid used for the forward and backward step. This increases the computational speed by a factor of eight.
With K

^

we denote the discrete version of K computed on the coarse grid.



LM.0: Choose three initial values: sðkÞ0;0 < sðkÞ1;0 < sðkÞ2;0

LM.1: For all l = 1, . . . , lmax

LM.1.1: Determine the quadratic function

q 2 P2 satisfying q sðkÞi;l�1

� 	
¼ K

^

sðkÞi;l�1

� 	
for i ¼ 0; 1; 2

and set

sðkÞl ¼ argminsP0qðsÞ:

LM.1.2: Set the new support points: if sðkÞl < sðkÞ0;l�1:

sðkÞ0;l ¼ sðkÞl sðkÞ1;l ¼ sðkÞ0;l�1 sðkÞ2;l ¼ sðkÞ2;l�1;

else if sðkÞ0;l�1 6 sðkÞl < sðkÞ1;l�1:

sðkÞ0;l ¼ sðkÞ0;l�1 sðkÞ1;l ¼ sðkÞl sðkÞ2;l ¼ sðkÞ1;l�1;

else if sðkÞ1;l�1 6 sðkÞl < sðkÞ2;l�1:

sðkÞ0;l ¼ sðkÞ1;l�1 sðkÞ1;l ¼ sðkÞ1;l�1 sðkÞ2;l ¼ sðkÞ2;l�1;

else

sðkÞ0;l ¼ sðkÞ0;l�1 sðkÞ1;l ¼ sðkÞ2;l�1 sðkÞ2;l ¼ sðkÞl ;

LM.1.3: if sðkÞ2;l � sðkÞ0;l < e jsðkÞ0;l j þ js
ðkÞ
2;l j

� 	
then GOTO LM.2

LM.2: Setting s(k) to the last minimum in LM.1.1: sðkÞ ¼ sðkÞl
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3.5. Discussion of Eqs. (7)–(13)

Enforcing f ðt; 0Þ ¼ �f ðt; 0Þ and f ðt;X 1Þ ¼ �f ðt;X 1Þ in (7) simplifies the numerical implementation. With this

setting the grid points at the container boundary xðkÞij with i = 0,N1 or jjj = N2 are known a priori (this means,

that they are independent of the gradient iteration k, unlike the grid points on the rest of the grid). This allows
us to use these grid points for the discretization of the container boundary, because these points have to be
specified a priori in order to store the data, e.g. for ûðkÞbc and v̂ðkÞ.

4. Numerical results

4.1. Test problem

As test configuration for our optimal control approach we consider a container of the size 20 cm · 40 cm
filled with a silicon melt. We optimize the solidification process over the time period [0, T] with T = 3600. The
physical constants for silicon are listed in Table 1. For as/l we choose
as ¼ 0:1
J

s cm2 K
and al ¼ 0:05

J

s cm2 K
:

The desired free boundary is the moving line �f ðt; yÞ ¼ 10þ 1
180

t. As initial condition for the temperature we
choose
u0ðxÞ ¼ u0s=lðx2 � 10Þ for x ¼ ðx1; x2Þ 2 Xs=l; ð42Þ



Table 1
Physical constants for silicon

q ¼ 2:5 g
cm3

cs ¼ 0:98 J
g K cl ¼ 2:3 J

g K

ks ¼ 0:56 J
s cm K kl ¼ 0:22 J

s cm K

L ¼ Ll � Ls ¼ 16:4 J
g

#M = 1420 �C
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where u0s and u0l are defined by
Fig. 3.
graph)
u0s=l :¼ as=l

180ks=lðas � alÞ
:

For the boundary value ub0 we choose
ub0ðt; xÞ ¼ u0s=lðx2 � �f ðt; 0ÞÞ þ mT e2

ks=l

as=l

u0s=l ð43Þ
for x 2 oX and t 2 [0,T].
The temperature u (white and grey stripes) and the free boundary (black line), together with the temperatures u(t, (0,x2)) (black
and ub(t, (0,x2)) (grey graph) at four different time instances for the uncontrolled problem (ubc = 0).
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For this choice of �f the function ub0 in (43) satisfies the compatibility conditions (8), (9), (11), (12) and (14).
For b we consider the two cases
b1ðt; ð0; x2ÞÞ ¼ b1ðt; ðX 1; x2ÞÞ ¼
tx2ð�f ðt;0Þ�x2Þ2

T �f ðt;0Þ3 : x2 < �f ðt; 0Þ;
tðx2��f ðt;0ÞÞ2ðX 2�x2Þ

T ðX 2��f ðt;0ÞÞ3 : x2 P �f ðt; 0Þ;

8<:
b1ðt; ðx1; 0ÞÞ ¼ b1ðt; ðx1;X 2ÞÞ ¼

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ðX 1 � x1Þ

p
TX 1

;

and
b2ðt; ð0; x2ÞÞ ¼ b2ðt; ðX 1; x2ÞÞ ¼
t
T min 1; 2 ð

�f ðt;0Þ�x2Þ2
�f ðt;0Þ2

n o
: x2 < �f ðt; 0Þ;

t
T min 1; 2 ðx2��f ðt;0ÞÞ2

ðX 2��f ðt;0ÞÞ2

n o
: x2 P �f ðt; 0Þ;

8><>:
b2ðt; ðx1; 0ÞÞ ¼ b2ðt; ðx1;X 2ÞÞ ¼

t
T

for x1 2 [0,X1] and x2 2 [0,X2]. We note that both these choices of b satisfy (15).
At the corners (0,0), (0, X2), (X1,0) and (X1,X2) of the domain the function b1 is equal to 0. This means, that

we enforce ubc = 0 at these points. This prevents large boundary temperatures ub, i.e. the choice of b = b1

admits the flavour of a regularization of the problem. Therefore we set k1 = 0 in the case b = b1. For
b = b2 we set k1 = 1.
 

 

  
 

 

  

 

 

  
 

 

  

Fig. 4. The grid for the uncontrolled problem at four different time instances, see Fig. 3.



672 M. Hinze, S. Ziegenbalg / Journal of Computational Physics 223 (2007) 657–684
The spatial grid contains 51 points in e1 direction and 101 points in e2-direction. This implies X1 = X2 = 50.
We set d = 0.6. The temporal grid contains 75001 grid points, i.e. Nt = 75000. This means that the number of
optimization variables is approximately 4 · 108.

The computational time for one forward step (FWD) takes approximately 136 s on a single AMD Athlon
MP 2133 MHz, for the backward step (BWD) it takes 133 s and the average computation time for one line
minimization step (LM) is 142 s.
Fig. 5. The temperature u (white and grey stripes) and the free boundary (black line), together with the temperatures u(t, (0,x2)) (black
graph) and ub(t, (0,x2)) (grey graph). The images show the results for the case b = b1 and k1 = 0 with k2 = 0 at three different time instances
after the first gradient iteration (left) and after 14 gradient iterations, when the stopping criterion (40) is met.
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4.2. Results for the uncontrolled case

First we examine the results for the uncontrolled forward problem with ubc = 0 (Forward step 0 of the algo-
rithm). Fig. 3 shows the shape of the free boundary, the temperature u and the graphs u(t, (0,x2)) and
ub(t, (0, x2)) with respect to x2 at four different time instances, and Fig. 4 shows the corresponding grids. As
expected forms the free boundary a concave graph during its evolution.
Fig. 6. The temperature u (white and grey stripes) and the free boundary (black line), together with the temperatures u(t, (0,x2)) (black
graph) and ub(t, (0,x2)) (grey graph). The images show the results for the case b = b1 and k1 = 0 with k2 = 500 at three different time
instances after the first gradient iteration (left) and after 10 gradient iterations, when the stopping criterion (40) is met. With k2 = 500 the
error of the free boundary at time T is reduced quicker than with k2 = 0 (Fig. 5).
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The temperature images (e.g. in Fig. 3) show white and grey stripes. Every stripe represents a temperature
interval corresponding to the legend shown right. The black line depicts the free boundary. Above every tem-
perature image two graphs are plotted. The black one shows the temperature u(t, (0,x2)) and the grey graph
represents the temperature ub(t, (0, x2)).

4.3. Results for the controlled case

Fist we examine the case b = b1 and k1 = 0 for different weights k2. Later we compare these results with the
results for the second case, b = b2 and k1 > 0. We present results obtained after the first gradient iteration
together with results obtained after the stopping criterion (40) is met, where we set eJ = 10�5. Finally we com-
pare the numerical performance obtained with the stopping criterions (40) and (41).
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Fig. 7. Iteration history of
ffiffiffi
J
p

for the controlled problem with k2 = 0 for each gradient step k in the case b = b1 and k1 = 0.
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Fig. 8. Iteration history of
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for the controlled problem with k2 = 500 for each gradient step k for the case b = b1 and k1 = 0.
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We begin our numerical investigation with the parameter setting b = b1 and k1 = k2 = 0. This means that
the error of the free boundary at time T is not penalized. As already noted in Section 4.1, we avoid large tem-
peratures on the container wall by the choice of b = b1, which allows us to set k1 = 0. Fig. 5 shows the shape of
the free boundary, the temperature and the boundary temperature at three different time instances. (At t = 0
the temperature and the free boundary are equal to the temperature and free boundary, respectively of the
Fig. 9. The temperature u (white and grey stripes) and the free boundary (black line), together with the temperatures u(t, (0,x2)) (black
graph) and ub(t, (0,x2)) (grey graph). The images show the results for the case b = b2 and k1 = 1 with k2 = 500 at three different time
instances after the first gradient iteration and after nine gradient iterations, when the stopping criterion (40) is met.
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uncontrolled problem.) Fig. 7 presents the cost functional J for every gradient iteration k. As can be seen the
error
Fig

Fig. 11
these c
J 0 :¼
Z T

0

Z X 1

0

ð�f ðt; yÞ � f ðt; yÞÞ2dxdt; ð44Þ
is reduced very quickly, and that the optimized evolution of the free boundary delivers a nearly flat graph at all
time instances.

Next, we set k2 = 500, b = b1 and k1 = 0. The numerical results are presented in Fig. 8 (cost functional) and
Fig. 6 (temperatures and free boundary). With this parameter choice
J 2 :¼
Z X 1

0

ð�f ðT ; yÞ � f ðT ; yÞÞ2dx; ð45Þ
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. 10. Iteration history of
ffiffiffi
J
p

for the controlled problem with k2 = 500 for each gradient step k for the case b = b2 and k1 = 1.
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(compare (44)). In the cases k1 = 0 the function J0 is reduced more, since

ases only deal with minimizing the error of the free boundary.
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is penalized. As expected, our numerical algorithm quickly reduces this error, see Fig. 12, where the behaviour
of this part of the functional is illustrated also for different parameter settings. The behaviour of J0 for the
same parameter settings is shown in Fig. 11. Again, the graph of the optimized evolution is nearly flat.

Now we investigate our second choice of b, i.e. we set b = b2 and k1 = 1. Since effects due to k2 are similar
to those in the case b = b1, k1 = 0, we now fix k2 = 500. The temperatures are shown in Fig. 9 and the iteration
history of the cost functional is presented in Fig. 10. With this parameter choice
Fig. 12
reduce

Table
The nu

As tole
J 1 ¼
Z T

0

Z
oX

bðt; xÞ2ubcðt; xÞ2dxdt; ð46Þ
is penalized. In Figs. 11 and 12 it can be seen, that in the first gradient iterations the errors J0 and J2 of the free
boundary are reduced as quick as in the case b = b1, k1 = 0 with the same value for k2. But after approximately
six iterations the errors J0 and J2 remain larger than in the cases b = b1, k1 = 0. This can be explained by the
fact that the setting k1 = 1 only allows smaller control actions as in the case k1 = 0. As a consequence the opti-
mal evolution of the free boundary in the present case is not as flat as in the case b = b1, k1 = 0.
 0
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ffiffiffiffiffi
J 2

p
at time T (compare (45)). As expected, for k2 > 0 the functional J2 is

d most.

2
mber of iterations kmax resulting from the stopping criterions (40) and (41) for all considered cases

rances we set eJ = 10�5 and ev = 10�3.
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Table 2 shows the number of iterations kmax resulting from the stopping criterions (40) and (41). Using the
first stopping criterion with eJ = 10�5 or the second one with ev = 10�3 the algorithm converges quickly, and
needs only about 10 iterations. With the choice k2 = 500 the algorithm converges a little bit faster than with
k2 = 0.

With the tolerances eJ = 10�5 and ev = 10�3 the iteration numbers kmax resulting from the stopping crite-
rions (40) and (41) are very similar. For this reason we only present numerical results obtained with stopping
criterion (40), see Figs. 5, 6 and 9.

As a result we note that with all investigated parameter constellations tracking of the desired evolution �f
works very well, see Figs. 5, 6 and 9. In particular we observe that the curvature of the optimized free bound-
ary is in all considered cases close to zero.
5. Conclusion

We present control of solidification for a two-phase Stefan problem with sharp interface modeled as a
graph. The control goal consists of tracking a prescribed evolution of the free boundary.

Our optimization approach ensures that the physical laws constituted by our mathematical model hold at
every stage of the optimization process. This is accomplished by regarding the interface itself as optimization
variable. We present several numerical examples which demonstrate the scope of our method. In all numerical
investigations the tracking of the interface works very well.

The optimization procedure in all cases yields a boundary temperature distribution which quickly guaran-
tees the desired flat free boundary.

We currently extend our approach to mathematical models which also incorporate flow driven by convec-
tion, and also include Lorentz forces as additional control variable. Further our approach easily extends to
other physical models and/or other control configurations.
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Appendix A. Development of the adjoint equation system

The directive derivative of L with respect to u is equal to
Lu~u ¼
Z T

0

Z
Xs

ðot~u� DsD~uÞps þ
Z T

0

Z
Xl

ðot~u� DlD~uÞpl þ
Z T

0

Z X 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q
½ks=lol~u� � U

� 	
pC;1

þ
Z T

0

Z X 1

0

~u � Uð ÞpC;2 þ
Z T

0

Z
oXsðtÞnCðtÞ

ks

as

om~uþ ~u
� �

pbs þ
Z T

0

Z
oXlðtÞnCðtÞ

kl

al

om~uþ ~u
� �

pbl:
Integration by parts of otu with respect to t and of Du with respect to x leads to
Lu~u ¼
Z

Xs

~uðT ; xÞpsðT ; xÞdx�
Z

Xs

~uð0; xÞpsð0; xÞdx�
Z T

0

Z
Xs

~uotps �
Z T

0

Z
oXsnC

Dspsom~u�
Z T

0

Z
C

Dspsom~u

þ
Z T

0

Z
oXsnC

Dsomps~uþ
Z T

0

Z
C

Dsomps~u�
Z T

0

Z
Xs

Ds~uDps þ
Z

Xl

~uðT ; xÞplðT ; xÞdx

�
Z

Xl

~uð0; xÞplð0; xÞdx�
Z T

0

Z
Xl

~uotpl �
Z T

0

Z
oXlnC

Dlplom~u�
Z T

0

Z
C

Dlplom~uþ
Z T

0

Z
oXlnC

Dlompl~u
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þ
Z T

0

Z
C

Dlompl~u�
Z T

0

Z
Xl

Dl~uDpl þ
Z T

0

Z X 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q
½ks=lol~u� � U

� 	
pC;1

þ
Z T

0

Z X 1

0

ð~u � UÞpC;2 þ
Z T

0

Z
oXsðtÞnCðtÞ

ks

as

om~uþ ~u
� �

pbs þ
Z T

0

Z
oXlðtÞnCðtÞ

kl

al

om~uþ ~u
� �

pbl:
The temperature u must not vary at t = 0, since u satisfies (21). This means that ~uð0; xÞ has to vanish. Now we
set Lu~u ¼ 0 for all feasible directions ~u.

1a. We start with setting Lu~u ¼ 0 for all ~u with ~uðt; xÞ ¼ 0 and om~uðt; xÞ ¼ 0 for x 2 oXs [ Xl or t = T:
0 ¼ �
Z T

0

Z
Xs

ðotps þ DsDpsÞ~u) 0 ¼ otpsðt; xÞ þ DsDpsðt; xÞ for t 2 ð0; T Þ and x 2 XsðtÞ:
1b. We set Lu~u ¼ 0 for all ~u with ~uðt; xÞ ¼ om~uðt; xÞ ¼ 0 for x 2 oXs [ oXl or t = T. Considering the equation
above we obtain
0 ¼ �
Z T

0

Z
Xl

ðotpl þ DlDplÞ~u) 0 ¼ otplðt; xÞ þ DlDplðt; xÞ for t 2 ð0; T Þ and x 2 XlðtÞ:
2a. We set Lu~u ¼ 0 for all ~u with ~uðt; xÞ ¼ 0 for x 2 oXl or t = T and om~uðt; xÞ ¼ 0 for x 2 oXs [ oXl. Consid-
ering the equations above we obtain
0 ¼
Z T

0

Z
oXsnC
ðDsomps þ pbsÞ~u) pbsðt; xÞ ¼ �Dsompsðt; xÞ for t 2 ð0; T Þ and x 2 oXsðtÞ n CðtÞ:
2b. We set Lu~u ¼ 0 for all ~u with ~uðt; xÞ ¼ 0 for x 2 C or t = T and om~uðt; xÞ ¼ 0 for x 2 oXs [ oXl. Consid-
ering the equations above we obtain
0 ¼
Z T

0

Z
oXlnC
ðDlompl þ pblÞ~u) pblðt; xÞ ¼ �Dlomplðt; xÞ for t 2 ð0; T Þ and x 2 oXlðtÞ n CðtÞ:
3a. We set Lu~u ¼ 0 for all ~u with ~uðt; xÞ ¼ 0 for x 2 C or t = T and om~uðt; xÞ ¼ 0 for x 2 oXl. Considering the
equations above we obtain
0 ¼
Z T

0

Z
oXsnC

�Dsps þ
ks

as

pbs

� �
om~u:
Substitution of pbs = �Dsomps (see 2a) leads to
psðt; xÞ ¼ � ks

as
ompsðt; xÞ

pbsðt; xÞ ¼ Dsas

ks
psðt; xÞ

for t 2 ð0; T Þ and x 2 oXsðtÞ n CðtÞ:
3b. We set Lu~u ¼ 0 for all ~u with ~uðt; xÞ ¼ om~uðt; xÞ ¼ 0 for x 2 C or t = T. Considering the equations above
we obtain:
0 ¼
Z T

0

Z
oXlnC

�Dlpl þ
kl

al

pbl

� �
om~u:
Substitution of pbl = �Dlompl (see 2b) leads to
plðt; xÞ ¼ � kl

al
omplðt; xÞ

pblðt; xÞ ¼ Dlal

kl
plðt; xÞ

for t 2 ð0; T Þ and x 2 oXlðtÞ n CðtÞ:
4a. We set Lu~u ¼ 0 for all ~u with ~uðt; xÞ ¼ om~uðt; xÞ ¼ 0 for x 2 C or (t,x) 2 {T} · Xl(T). Considering the
equations above we obtain
0 ¼
Z

Xs

~uðT ; xÞpsðT ; xÞdx) psðT ; xÞ ¼ 0 for x 2 XsðT Þ:
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4b. We set Lu~u ¼ 0 for all ~u with ~uðt; xÞ ¼ om~uðt; xÞ ¼ 0 for x 2 C. Considering the equations above we obtain
0 ¼
Z

Xl

~uðT ; xÞplðT ; xÞdx) plðT ; xÞ ¼ 0 for x 2 XlðT Þ:
5a. We set Lu~u ¼ 0 for all ~u with ð~u � UÞðt; yÞ ¼ 0 and ðol~u � UÞðt; yÞjXs
¼ 0 for y 2 (0,X1) and t 2 (0,T). For

the integrals over C we have to change the parametrization:
Z
C

g ¼
Z X 1

0

kUyk2 � g � U ¼
Z X 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q
� g � U:
Considering this together with the equations above, we obtain
0 ¼
Z T

0

Z X 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q
ðklpC;1 þ Dlðpl � UÞÞðol~ujXl

� UÞ ) pC;1ðt; yÞ ¼ � Dl

kl
plðt; xÞ

for t 2 ð0; tÞ; y 2 ð0;X 1Þ and x ¼
y

f ðt; yÞ

� �
:

5b. We set Lu~u ¼ 0 for all ~u with ð~u � UÞðt; yÞ ¼ 0 for y 2 (0, X1) and t 2 (0,T). Considering the equations
above we obtain
0 ¼
Z T

0

Z X 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q
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ks
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for t 2 ð0; tÞ; y 2 ð0;X 1Þ and x ¼
y

f ðt; yÞ

� �
:

5c. We set Lu~u ¼ 0 for all ~u. Considering the equations above we obtain
0 ¼
Z T

0

Z X 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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y

q
ðDsomps � Uþ Dlompl � UÞ þ pC;2

� 	
� ð~u � UÞ )

pC;2ðt; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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y

q
½Ds=lolps=l� t;

y

f ðt; yÞ
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for y 2 ð0;X 1Þ and t 2 ð0; tÞ:
With the substitutions (25) the adjoint equation system (26)–(31) follows.

As next we reassemble the Lagrange function by integration by parts (similar as Lu~u):
L ¼ 1
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Substituting the already known parts of the adjoint equation system we obtain
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L ¼ 1

2

Z T

0

Z X 1
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The directional derivative with respect to f is equal to
Lf
~f ¼

Z T

0

Z X 1

0

ðf � �f Þ~f þ k2

Z X 1

0

lðf ðT ; yÞ � �f ðT ; yÞÞ~f ðT ; yÞdy þ
Z T

0

Z X 1

0

~f tpC;1:
Integration by parts leads to
Lf
~f ¼

Z T

0

Z X 1

0

ðf � �f Þ~f þ k2

Z X 1

0

ðf ðT ; yÞ � �f ðT ; yÞÞ~f ðT ; yÞdy þ
Z X 1

0

pC;1ðT ; yÞ~f ðT ; yÞdy

�
Z X 1

0

pC;1ð0; yÞ~f ð0; yÞdy �
Z T

0

Z X 1

0

otpC;1
~f :
The function f must not vary at t = 0, since f satisfies (22). This means that ~f ð0; yÞ vanish. We set Lf
~f ¼ 0 for

all feasible directions ~f .

1. We set Lf
~f ¼ 0 for all ~f with ~f ðT ; yÞ ¼ 0 (y 2 [0,x1]). Considering the re-parametrization we obtain
0 ¼
Z T

0

Z X 1

0

ðf � �f � otpC;1Þ~f ) �otpC;1 ¼ �f ðt; yÞ � f ðt; yÞ for t 2 ð0; T Þ and y 2 ð0;X 1Þ:
2. Finally we set Lf
~f ¼ 0 for all ~f . Considering the equations above we obtain
0¼
Z X 1

0

ðk2ðf ðT ; yÞ � �f ðT ; yÞÞ þ pC;1ðT ; yÞÞ~f ðT ; yÞdy) pC;1ðT ; yÞ ¼ k2ð�f ðT ; yÞ � f ðT ; yÞÞ for y 2 ð0;X 1Þ:
With the substitutions (25) the adjoint equation system (32)–(34) follows.
Appendix B. Compatibility conditions (8), (9), (11) and (12)

To derive (8), (9), (11) and (12) we assume continuity of our mathematical system at the intersection of the
free boundary and the container wall. In the present two-dimensional setting we need to distinguish two cases,
namely the intersection at {(0, f(t, 0))} and the intersection at {(X1, f(t,X1))}. Since these cases only differ in
signs we distinguish between the two cases using ‘‘±’’ and ‘‘«’’, respectively, where the upper sign refers to
the intersection at {(0, f(t, 0))} and the lower sign refers to the intersection at {(X1, f(t,X1))}.

Theorem B.1. If u(t, x), ub(t,x) and $u(t, x) are continuous with respect to x and ft(t,y) is continuous with respect

to y, the following equations are satisfied on (0,T] · {(0, f(t, 0))} and on (0,T] · {(X1, f(t,X1))}, respectively;
ftfy

1þ f 2
y

¼ �ðas � alÞub; and ðB:1Þ

oe2
ubjXs=l

¼ ft

1þ f 2
y

g
1

as � al

as=l

ks=l

� 2
fyfyy

ð1þ f 2
y Þ

2

 !
� ub

Ds=l

 !

 fyt

ðas � alÞð1þ f 2
y Þ

2
: ðB:2Þ
These form the compatibility conditions (8), (9), (11) and (12).

Proof of (B.1). Let us recall some identities for the normal vector at the free boundary and the temperature
gradient at the container wall;
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l ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q �fy

1

� �
ru ¼

oe1
u

oe2
u

� �
¼

omu

oe2
u

� �
:

The tangential vector s at the free boundary is given by
s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q 1

fy

� �
:

From the melting temperature condition u = 0 on the free boundary we obtain
osu ¼

omujXs=l

þ fyoe2
ujXs=lffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
y

q ¼ 0;
which implies
�omujXs=l
¼ fyoe2

ujXs=l
: ðB:3Þ
Using olu ¼ �fyomuþoe2
uffiffiffiffiffiffiffiffi

1þf 2
y

p and (B.3) we obtain;
fyolujXs=lffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q ¼
�f 2

y omujXs=l
þ fyoe2

ujXs=l

1þ f 2
y

¼
ðB:3Þ

�f 2
y omujXs=l

� omujXs=l

1þ f 2
y

¼ �omujXs=l
: ðB:4Þ
From the boundary condition ub � u ¼ ks=l

as=l
omujXs=l

and from u = 0 on the free boundary it follows that
ub ¼
ks=l

as=l

omujXs=l
: ðB:5Þ
Using the calculations above and substituting ft by the Stefan condition (18) we finally obtain
fyft

1þ f 2
y

¼
ðStefan cond:Þ

�kl

fyolujXlffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q þ ks

fyolujXsffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q ¼
ðB:4Þ

klomujXl

� ksomujXs
¼
ðB:5Þ
�ðas � alÞub;
which is (B.1). h

Proof of (B.2). By (B.3) and (B.4) we obtain
olujXs=lffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q ¼ oe2
ujXs=l

: ðB:6Þ
From the boundary condition ub ¼ uþ ks=l

as=l
omu it follows that
oe2
ubjXs=l

¼ oe2
ujXs=l

þ ks=l

as=l

oe2
omujXs=l

: ðB:7Þ
Thus we need to derive formulations for oe2
u and oe2

omu. First we consider oe2
u. From (B.4), (B.5) and (B.1) it

follows that
fyolujXs=lffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q ¼
ðB:4Þ
�omujXs=l

¼
ðB:5Þ
� as=l

ks=l

ub ¼
ðB:1Þ

as=l

ðas � alÞks=l

� ftfy

1þ f 2
y

;

which implies
olujXs=l
¼ as=l

ðas � alÞks=l

� ftffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

y

q : ðB:8Þ
From (B.6) we obtain
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oe2
ujXs=l

¼ as=l

ðas � alÞks=l

� ft

1þ f 2
y

: ðB:9Þ
The expression omoe2
u is composed of osoe2

u and oloe2
u. In order to derive expressions for the latter quantities

we need to provide derivatives in direction s of re-parametrized variables of the form g
y

f ðyÞ

� �� �
. Forming

limits gives
osg
y

f ðyÞ

� �� �
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e!0

g
y
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� �
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p 1
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� �� �
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� �� �
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y

p rgT
1
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� �
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y

q oyg
y

f ðyÞ

� �� �
:

Now the expression for osoe2
u follows from (B.9);
osoe2
ujXs=l

¼ as=l

ðas � alÞks=l

� oy
ft

1þ f 2
y

 !
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
y

q ¼ as=l

ðas � alÞks=l

fty

ð1þ f 2
y Þ

1:5
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From the heat equation at the free boundary (o2
su ¼ 0) and from (B.8) it follows that
Ds=lo
2
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¼ �V ColujXs=l
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� f 2
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;

and by substitution of (B.6) we obtain
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ðas � alÞks=lDs=l

� f 2
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Finally we can derive an expression for oe2
omu from (B.10) and (B.11);
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� ub

Ds=l

� ft

1þ f 2
y

 !
: ðB:12Þ
Now (B.2) can be assembled directly from (B.7), (B.9) and (B.12);
oe2
ubjXs=l

¼ ft

1þ f 2
y

1

as � al

as=l

ks=l

� 2
fyfyy

ð1þ f 2
y Þ

2

 !
� ub

Ds=l

g

 !
fyt

ðas � alÞð1þ f 2
y Þ

2
: �
References

[3] P. Colli, M. Grasselli, J. Sprekels, Automatic control via thermostats of a hyperbolic stefan problem with memory, Applied
Mathematics and Optimization 39 (1999) 229–255.

[4] W.B. Dunbar, N. Petit, P. Rouchon, P. Martin, Boundary control of a nonlinear Stefan problem, in: Proceedings of the 2003
Conference on Decision and Control, Maui, HI, 2003, pp. 1309–1314.

[5] W.B. Dunbar, N. Petit, P. Rouchon, P. Martin, Motion planning for a nonlinear Stefan problem, Control Optimisation and Calculus
of Variations 9 (2003) 275–296.



684 M. Hinze, S. Ziegenbalg / Journal of Computational Physics 223 (2007) 657–684
[6] K.-H. Hoffmann, J. Sprekels, Real-time control in a free boundary problem connected with the continuous casting of steel, in: K.-H.
Hoffmann, W. Krabs (Eds.), Optimal Control of Partial Differential Equations, Birkhäuser, 1984.
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